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Generative Models
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▶ Target distribution PX over X
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Generative Models

▶ Input space X

▶ Target distribution PX

▶ Latent space Z

▶ Prior PZ over Z
▶ Generator G : Z → X

▶ Model distribution PG = G#PZ

If X = G(z ) where z ∼ PZ then X ∼ G#PZ .
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Generative Models

Z

G

PG := G#PZ

PZ

X

PX

6/38



Generative Models

▶ Take some discrepancy D : P(X)× P(X) → R⩾0
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Generative Models

▶ Take some discrepancy D : P(X)× P(X) → R⩾0
▶ Find G that minimizes D(PG ,PX ) = D(G#PZ ,PX )

▶ How do we pick D?

9/38



Candidates for D: f -Divergence

[Ali and Silvey, 1966]
For a convex function f : R → (−∞,∞], f (1) = 0

D(G#PZ ,PX ) = Df (PX ,PG) =

∫
X

f

(
dPX

dPG

)
dPG (1)
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Candidates for D: Integral Probability
Metric

[Sriperumbudur et al., 2009]
For a function class H ⊆ F(X,R),

D(G#PZ ,PX ) = IPMH (G#PZ ,PX ) (2)

= sup
h∈H

{∫
X

h(x )dPX (x ) −

∫
X

h(x )dPG(x )

}
(3)
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Candidates for D: Wasserstein Distance

[Villani, 2008]
▶ For some cost c : X× X → R⩾0
▶ Π(PX ,PG) ={

π ∈ P(X× X) :

∫
X

π(x , y)dy = PX (x ),

∫
X

π(x , y)dx = PG(y)

}
▶ Wasserstein distance between PX and PG is

Wc(PX ,PG) = inf
π∈Π(PX ,PG)

{∫
X×X

c(x , y)dπ(x , y)

}
(4)
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Generative Adversarial Networks

[Goodfellow et al., 2014]
▶ Pick a set of discriminators D ⊆ F(X, (0, 1)).

D(G#PZ ,PX ) = sup
d∈D

{
Ex∼PX

[log(d(x ))] + Ex∼PG
[log(1− d(x ))]

}
(5)
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Generative Adversarial Networks

[Goodfellow et al., 2014, Arjovsky et al., 2017]
▶ Pick a set of discriminators D ⊆ F(X,R).

D(G#PZ ,PX ) = sup
d∈D

{
Ex∼PX

[log(d(x ))] + Ex∼PG
[log(1− d(x ))]

}
(6)

D(G#PZ ,PX ) = sup
d∈Hc

{
Ex∼PX

[d(x )] − Ex∼PG
[d(x )]

}
(7)

D(G#PZ ,PX ) = sup
d∈D

{
Ex∼PX

[d(x )] − Ex∼PG
[f ⋆(d(x ))]

}
(8)

. . . (9)
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Generative Adversarial Networks

f -GAN Objective [Nowozin et al., 2016]
▶ Pick a convex function f : R → R with f (1) = 0.
▶ Pick a set of discriminators D ⊆ F(X,R).

GANf (G ;D) := sup
d∈D

{
Ex∼PX

[d(x )] − Ex∼PG
[f ⋆(d(x ))]

}
(10)

where f ⋆(x ) = supy
{
x · y − f (y)

}
is the Legendre-Fenchel

conjugate.
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Generative Adversarial Networks

f -GAN Objective [Nowozin et al., 2016]
▶ Pick a convex function f : R → R with f (1) = 0.
▶ Pick a set of discriminators D ⊆ F(X, Dom(f ⋆)).

GANf (G ;D) := sup
d∈D

{
Ex∼PX

[d(x )] − Ex∼PG
[f ⋆(d(x ))]

}
(11)

where f ⋆(x ) = supy
{
x · y − f (y)

}
is the Legendre-Fenchel

conjugate.
▶ If D = F(X, Dom(f ⋆)), then GANf (G ;D) = Df (PX ,PG)

[Nguyen et al., 2010].
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Autoencoders

▶ Encoder functions E : X → P(Z)

▶ E ∈ F(X,P(Z))

▶ Reconstructing x ∈ X means

Ez∼E(x)[c(x ,G(z ))] (12)
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Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]
▶ Pick a reconstruction cost c : X× X → R⩾0
▶ Pick a regularization function Ω : F(X,P(Z)) → R⩾0

D(G#PZ ,PX ) = (13)

inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x ,G(z ))]dPX (x ) +Ω(E )

}
(14)
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Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]
▶ Pick a reconstruction cost c : X× X → R⩾0
▶ Pick a regularization function Ω : F(X,P(Z)) → R⩾0

D(G#PZ ,PX ) = (15)

inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x ,G(z ))]dPX (x ) +Ω(E )

}
(16)

▶ Autoencoder Ω(E ) = 0
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Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]
▶ Pick a reconstruction cost c : X× X → R⩾0
▶ Pick a regularization function Ω : F(X,P(Z)) → R⩾0
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inf
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{∫
X
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▶ Autoencoder Ω(E ) = 0

▶ Variational Autoencoder Ω(E ) =

∫
X

KL(E (x ),PZ )dPX (x )
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Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]
▶ Pick a reconstruction cost c : X× X → R⩾0
▶ Pick a regularization function Ω : F(X,P(Z)) → R⩾0

D(G#PZ ,PX ) = (19)

inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x ,G(z ))]dPX (x ) +Ω(E )

}
(20)

▶ Autoencoder Ω(E ) = 0

▶ Variational Autoencoder Ω(E ) =

∫
X

KL(E (x ),PZ )dPX (x )

▶ InfoVAE Ω(E ) = KL(E#PX ,PZ )

21/38



Autoencoders

WAE Objective [Tolstikhin et al., 2017]
▶ Pick a reconstruction cost c : X× X → R⩾0
▶ Pick a regularization function Ω : P(Z)× P(Z) → R⩾0

WAEc,λ·Ω(G) = (21)

inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x ,G(z ))]dPX (x ) + λΩ(E#PX ,PZ )

}
(22)

▶ E#PX is also referred to as the aggregated posterior.
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Primal-Dual Optimization

▶ What is Duality?
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Primal-Dual Optimization

▶ What is Duality?
▶ inf and sup

▶ inf
a

F (a) ⩾ sup
b

G(a) (Weak duality)

▶ inf
a

F (a) = sup
b

G(b) (Strong duality)
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Primal-Dual Link

Theorem 1
Suppose (X, c) is a metric space and let Hc ⊆ F(X,R) denote the
set of 1-Lipschitz functions with respect to the metric c. Let
f : R → (−∞,∞] be a convex function with f (1) = 0. We have
for any G : Z → X and all λ > 0

WAEc,λ·Df
(G) ⩾ GANλf (G ;Hc) (23)

▶ Equality holds when G is invertible.
▶ Equality holds for any G if λ > λ∗(PX ) for some finite

λ∗(PX ).
▶ Setting f (x ) = 1{1}(x ) with G = Id and Z = X recovers the

Kantorovich-Rubinstein duality.
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Primal-Dual Link

Theorem 2
Suppose (X, c) is a metric space and let Hc ⊆ F(X,R) denote the
set of 1-Lipschitz functions with respect to the metric c. Let
f : R → (−∞,∞] be a convex function with f (1) = 0. We have
for any G : Z → X and all λ > λ∗(PX )

WAEc,λ·Df
(G) = GANλf (G ;Hc) = Wc(PX ,PG) (24)
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Duality

Legendre-Fenchel Duality

Df (PX ,PG) = sup
d∈F(X,R)

{
Ex∼PX

[d(x )] − Ex∼PG
[f ⋆(d(x ))]

}
Main Theorem

WAEc,λ·Df
(G) = sup

d∈Hc

{
Ex∼PX

[d(x )] − Ex∼PG
[f ⋆(d(x ))]

}
Kantorovich-Rubenstein Duality

Wc(PX ,PG) = sup
d∈Hc

{
Ex∼PX

[d(x )] − Ex∼PG
[d(x )]

}
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Theoretical Application: Generalization
Bound

▶ How do generative models generalize?
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▶ How do generative models generalize?
▶ For GANs, it depends on the discriminator set D.

[Zhang et al., 2017]
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Theoretical Application: Generalization
Bound

▶ How do generative models generalize?
▶ For GANs, it depends on the discriminator set D

[Zhang et al., 2017].
▶ What about Autoencoders?
▶ Apply duality with D = Hc
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Theoretical Application: Generalization
Bound

Theorem 3
Let ŴAEc,λ·Df

denote the WAEc,λ·Df
objectives with n i.i.d

samples for PX . Assume that ∆ := supx ,x ′∈supp(PX ) c(x , x
′) < ∞

and suppose S is the 1-Upper Wasserstein dimension of PX then
we have

WAEc,λ·Df
⩽ ŴAEc,λ·Df

+O

n−1/S + ∆

√
1
n
ln

(
1
δ

) , (25)

with probability at least 1− δ.
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