A Primal-Dual link between GANs and Autoencoders

Hisham Husain

Richard Nock

Robert C. Williamson

Research School of Computer Science CSIRO Data61

OUTLINE

- Generative Models
- GANs and Autoencoders
- ► A Primal-Dual Relationship
- ► Implications / Conclusion

 $\blacktriangleright \text{ Input space } \mathcal{X}$

• Target distribution P_X over \mathfrak{X}

- ► Input space \mathcal{X}
- Target distribution P_X
- ► Latent space \mathcal{Z}
- Prior P_Z over \mathfrak{Z}
- Generator $G: \mathcal{Z} \to \mathcal{X}$
- Model distribution $P_G = G \# P_Z$

- $\blacktriangleright \text{ Input space } \mathcal{X}$
- ► Target distribution *P*_{*X*}
- ▶ Latent space \mathcal{Z}
- Prior P_Z over \mathfrak{Z}
- Generator $G: \mathcal{Z} \to \mathcal{X}$
- Model distribution $P_G = G \# P_Z$ If X = G(z) where $z \sim P_Z$ then $X \sim G \# P_Z$.

• Take some discrepancy $D: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$

Take some discrepancy D: P(X) × P(X) → ℝ≥0
 Find G that minimizes D(P_G, P_X) = D(G#P_Z, P_X)

- Take some discrepancy $D: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$
- Find G that minimizes $D(P_G, P_X) = D(G \# P_Z, P_X)$
- ► How do we pick *D*?

Candidates for D: f-Divergence

[Ali and Silvey, 1966] For a convex function $f:\mathbb{R}\to (-\infty,\infty], f(1)=0$

$$D(G \# P_Z, P_X) = D_f(P_X, P_G) = \int_{\mathcal{X}} f\left(\frac{dP_X}{dP_G}\right) dP_G \qquad (1)$$

Candidates for D: Integral Probability Metric

[Sriperumbudur et al., 2009] For a function class $H \subseteq \mathcal{F}(\mathcal{X}, \mathbb{R})$,

$$D(G \# P_Z, P_X) = \operatorname{IPM}_H(G \# P_Z, P_X)$$
(2)
=
$$\sup_{h \in H} \left\{ \int_{\mathcal{X}} h(x) dP_X(x) - \int_{\mathcal{X}} h(x) dP_G(x) \right\}$$
(3)

Candidates for D: Wasserstein Distance

[Villani, 2008]

• For some cost $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geqslant 0}$

• Wasserstein distance between P_X and P_G is

$$W_c(P_X, P_G) = \inf_{\pi \in \Pi(P_X, P_G)} \left\{ \int_{\mathcal{X} \times \mathcal{X}} c(x, y) d\pi(x, y) \right\}$$
(4)

[Goodfellow et al., 2014]

▶ Pick a set of discriminators $\mathcal{D} \subseteq \mathcal{F}(\mathcal{X}, (0, 1))$.

 $D(G \# P_Z, P_X) = \sup_{d \in \mathcal{D}} \left\{ \mathbb{E}_{x \sim P_X} [\log(d(x))] + \mathbb{E}_{x \sim P_G} [\log(1 - d(x))] \right\}$ (5)

[Goodfellow et al., 2014, Arjovsky et al., 2017]

• Pick a set of discriminators $\mathcal{D} \subseteq \mathcal{F}(\mathcal{X}, \mathbb{R})$.

$$D(G \# P_Z, P_X) = \sup_{d \in \mathcal{D}} \left\{ \mathbb{E}_{x \sim P_X} [\log(d(x))] + \mathbb{E}_{x \sim P_G} [\log(1 - d(x))] \right\}$$
(6)

(6)

$$D(G \# P_Z, P_X) = \sup_{\boldsymbol{d} \in \mathcal{H}_c} \left\{ \mathbb{E}_{x \sim P_X}[d(x)] - \mathbb{E}_{x \sim P_G}[d(x)] \right\}$$
(7)

$$D(G \# P_Z, P_X) = \sup_{d \in \mathcal{D}} \left\{ \mathbb{E}_{x \sim P_X}[d(x)] - \mathbb{E}_{x \sim P_G}[f^*(d(x))] \right\}$$
(8)

f-GAN Objective [Nowozin et al., 2016]

• Pick a convex function $f : \mathbb{R} \to \mathbb{R}$ with f(1) = 0.

• Pick a set of discriminators $\mathcal{D} \subseteq \mathcal{F}(\mathcal{X}, \mathbb{R})$.

$$\operatorname{GAN}_{f}(G; \mathcal{D}) := \sup_{d \in \mathcal{D}} \left\{ \mathbb{E}_{x \sim P_{X}}[d(x)] - \mathbb{E}_{x \sim P_{G}}[f^{\star}(d(x))] \right\}$$
(10)

where $f^{\star}(x) = \sup_{y} \left\{ x \cdot y - f(y) \right\}$ is the Legendre-Fenchel conjugate.

f-GAN Objective [Nowozin et al., 2016]

- Pick a convex function $f : \mathbb{R} \to \mathbb{R}$ with f(1) = 0.
- Pick a set of discriminators $\mathcal{D} \subseteq \mathcal{F}(\mathcal{X}, \text{Dom}(f^*))$.

$$\operatorname{GAN}_{f}(G; \mathcal{D}) := \sup_{d \in \mathcal{D}} \left\{ \mathbb{E}_{x \sim P_{X}}[d(x)] - \mathbb{E}_{x \sim P_{G}}[f^{\star}(d(x))] \right\}$$
(11)

where $f^{\star}(x) = \sup_{y}\left\{x\cdot y - f(y)\right\}$ is the Legendre-Fenchel conjugate.

• If $\mathcal{D} = \mathcal{F}(\mathcal{X}, \text{Dom}(f^*))$, then $\text{GAN}_f(G; D) = D_f(P_X, P_G)$ [Nguyen et al., 2010].

Autoencoders

- Encoder functions $E: \mathfrak{X} \to \mathfrak{P}(\mathfrak{Z})$
- $\blacktriangleright \ E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(\mathcal{Z}))$
- Reconstructing $x \in \mathcal{X}$ means

$$\mathbb{E}_{z \sim E(x)}[c(x, G(z))] \tag{12}$$

Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]

- ▶ Pick a reconstruction cost $c : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$
- Pick a regularization function $\Omega : \mathfrak{F}(\mathfrak{X}, \mathfrak{P}(\mathfrak{Z})) \to \mathbb{R}_{\geq 0}$

$$D(G \# P_Z, P_X) =$$

$$\inf_{E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(Z))} \left\{ \int_{\mathcal{X}} \mathbb{E}_{z \sim E(x)} [c(x, G(z))] dP_X(x) + \Omega(E) \right\}$$
(14)

AUTOENCODERS

[Kingma and Welling, 2013, Zhao et al., 2017]

- Pick a reconstruction cost $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_{\geqslant 0}$
- ► Pick a regularization function $\Omega : \mathcal{F}(\mathcal{X}, \mathcal{P}(\mathcal{Z})) \to \mathbb{R}_{\geq 0}$

$$D(G \# P_Z, P_X) =$$

$$\inf_{E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(Z))} \left\{ \int_{\mathcal{X}} \mathbb{E}_{z \sim E(x)} [c(x, G(z))] dP_X(x) + \Omega(E) \right\}$$
(16)

• Autoencoder $\Omega(E) = 0$

AUTOENCODERS

[Kingma and Welling, 2013, Zhao et al., 2017]

- Pick a reconstruction cost $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_{\geqslant 0}$
- ► Pick a regularization function $\Omega : \mathfrak{F}(\mathfrak{X}, \mathfrak{P}(\mathfrak{Z})) \to \mathbb{R}_{\geq 0}$

$$D(G \# P_Z, P_X) =$$

$$\inf_{E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(Z))} \left\{ \int_{\mathcal{X}} \mathbb{E}_{z \sim E(x)} [c(x, G(z))] dP_X(x) + \Omega(E) \right\}$$
(18)

• Autoencoder $\Omega(E) = 0$

• Variational Autoencoder $\Omega(E) = \int_{\mathcal{X}} \operatorname{KL}(E(x), P_Z) dP_X(x)$

Autoencoders

[Kingma and Welling, 2013, Zhao et al., 2017]

- Pick a reconstruction cost $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_{\geq 0}$
- Pick a regularization function $\Omega : \mathfrak{F}(\mathfrak{X}, \mathfrak{P}(\mathfrak{Z})) \to \mathbb{R}_{\geq 0}$

$$D(G \# P_Z, P_X) =$$

$$\inf_{E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(Z))} \left\{ \int_{\mathcal{X}} \mathbb{E}_{z \sim E(x)} [c(x, G(z))] dP_X(x) + \Omega(E) \right\}$$
(20)

• Autoencoder $\Omega(E) = 0$

• Variational Autoencoder $\Omega(E) = \int_{\infty} \operatorname{KL}(E(x), P_Z) dP_X(x)$

• InfoVAE $\Omega(E) = \operatorname{KL}(E \# P_X, P_Z)$

Autoencoders

WAE Objective [Tolstikhin et al., 2017]

- Pick a reconstruction cost $c: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_{\geq 0}$
- Pick a regularization function $\Omega: \mathfrak{P}(\mathfrak{Z}) \times \mathfrak{P}(\mathfrak{Z}) \to \mathbb{R}_{\geqslant 0}$

WAE<sub>c,
$$\lambda$$
· Ω</sub> (G) = (21)
$$\inf_{E \in \mathcal{F}(\mathcal{X}, \mathcal{P}(Z))} \left\{ \int_{\mathcal{X}} \mathbb{E}_{z \sim E(x)} [c(x, G(z))] dP_X(x) + \lambda \Omega(E \# P_X, P_Z) \right\}$$
(22)

• $E \# P_X$ is also referred to as the aggregated posterior.

► What is Duality?

► What is Duality?

 \blacktriangleright inf and sup

- ► What is Duality?
- \blacktriangleright inf and sup
- $\inf_{a} F(a) \ge \sup_{b} G(b)$ (Weak duality)

- ► What is Duality?
- \blacktriangleright inf and sup
- $\inf_{a} F(a) \ge \sup_{b} G(a)$ (Weak duality)
- $\inf_{a} F(a) = \sup_{b} G(b)$ (Strong duality)

PRIMAL-DUAL LINK

Theorem 1

Suppose (\mathfrak{X}, c) is a metric space and let $\mathfrak{H}_c \subseteq \mathfrak{F}(\mathfrak{X}, \mathbb{R})$ denote the set of 1-Lipschitz functions with respect to the metric c. Let $f : \mathbb{R} \to (-\infty, \infty]$ be a convex function with f(1) = 0. We have for any $G : \mathfrak{Z} \to \mathfrak{X}$ and all $\lambda > 0$

$$WAE_{c,\lambda \cdot D_f}(G) \ge GAN_{\lambda f}(G; \mathcal{H}_c)$$
(23)

- Equality holds when G is invertible.
- Equality holds for any G if $\lambda > \lambda^*(P_X)$ for some finite $\lambda^*(P_X)$.
- Setting $f(x) = 1_{\{1\}}(x)$ with G = Id and $\mathfrak{Z} = \mathfrak{X}$ recovers the Kantorovich-Rubinstein duality.

PRIMAL-DUAL LINK

Theorem 2

Suppose (\mathfrak{X}, c) is a metric space and let $\mathfrak{H}_c \subseteq \mathfrak{F}(\mathfrak{X}, \mathbb{R})$ denote the set of 1-Lipschitz functions with respect to the metric c. Let $f : \mathbb{R} \to (-\infty, \infty]$ be a convex function with f(1) = 0. We have for any $G : \mathfrak{Z} \to \mathfrak{X}$ and all $\lambda > \lambda^*(P_X)$

$$WAE_{c,\lambda \cdot D_f}(G) = GAN_{\lambda f}(G; \mathcal{H}_c) = W_c(P_X, P_G)$$
(24)

DUALITY

Legendre-Fenchel Duality

$$D_f(P_X, P_G) = \sup_{d \in \mathcal{F}(\mathcal{X}, \mathbb{R})} \left\{ \mathbb{E}_{x \sim P_X}[d(x)] - \mathbb{E}_{x \sim P_G}[f^{\star}(d(x))] \right\}$$

Main Theorem

$$WAE_{c,\lambda \cdot D_f}(G) = \sup_{d \in \mathcal{H}_c} \left\{ \mathbb{E}_{x \sim P_X}[d(x)] - \mathbb{E}_{x \sim P_G}[f^*(d(x))] \right\}$$

Kantorovich-Rubenstein Duality

$$W_c(P_X, P_G) = \sup_{d \in \mathcal{H}_c} \left\{ \mathbb{E}_{x \sim P_X}[d(x)] - \mathbb{E}_{x \sim P_G}[d(x)] \right\}$$

How do generative models generalize?

- How do generative models generalize?
- ► For GANs, it depends on the discriminator set D. [Zhang et al., 2017]

- How do generative models generalize?
- ► For GANs, it depends on the discriminator set D. [Zhang et al., 2017].
- ► What about Autoencoders?

- How do generative models generalize?
- ► For GANs, it depends on the discriminator set D [Zhang et al., 2017].
- What about Autoencoders?
- Apply duality with $\mathcal{D} = \mathcal{H}_c$

Theorem 3

Let $\widehat{WAE}_{c,\lambda\cdot D_f}$ denote the $WAE_{c,\lambda\cdot D_f}$ objectives with n i.i.d samples for P_X . Assume that $\Delta := \sup_{x,x' \in supp(P_X)} c(x,x') < \infty$ and suppose S is the 1-Upper Wasserstein dimension of P_X then we have

WAE<sub>c,
$$\lambda$$
·D_f</sub> $\leq \widehat{WAE}_{c,\lambda$ ·D_f} + O\left(n^{-1/S} + \Delta \sqrt{\frac{1}{n} \ln\left(\frac{1}{\delta}\right)}\right), (25)

with probability at least $1 - \delta$.

References I

Ali, S. M. and Silvey, S. D. (1966).

A general class of coefficients of divergence of one distribution from another.

Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131–142.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. *arXiv preprint arXiv:1701.07875.*

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).

Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680.

References II

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neural samplers using variational divergence minimization.

In Advances in Neural Information Processing Systems, pages 271–279.

References III

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. R. (2009). On integral probability metrics,\phi-divergences and binary classification. arXiv preprint arXiv:0901.2698.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017).

Wasserstein auto-encoders.

arXiv preprint arXiv:1711.01558.

📄 Villani, C. (2008).

Optimal transport: old and new, volume 338. Springer Science & Business Media.

References IV

Zhang, P., Liu, Q., Zhou, D., Xu, T., and He, X. (2017). On the discrimination-generalization tradeoff in gans. *arXiv preprint arXiv:1711.02771*.

Zhao, S., Song, J., and Ermon, S. (2017). Infovae: Information maximizing variational autoencoders. arXiv preprint arXiv:1706.02262.